ASYMMETRIC SYNTHESIS OF 2-SUBSTITUTED CYCLOALKANECARBOXALDEHYDES

Shun-ichi Hashimoto, Hıroshi Kogen, Kiyoshi Tomioka, and Kenji Koga* Faculty of Pharmaceutical Sciences, University of Tokyo Hongo, Bunkyo-ku, Tokyo 113, Japan

Summary: The l,4-addition of Grignard reagents to chiral α, β-unsaturated cyclic aldimınes (3), prepared from the corresponding cycloalkenecarboxaldehydes (1) and optically active α-amino acid tert-butyl esters (2), was found to give, after hydrolysis, trans-2-substıtuted cycloalkanecarboxaldehydes (5) in reasonably high enantiomeric puritıes.

In previous papers, ${ }^{1}$ we have devetoped a novel method for the asymmetric carbon-carbon bond formation in the syntheses of optically active α-amino acids, β-substıtuted acyclic aldehydes, and α-substituted cyclic ketones in high enantiomeric purities based on the principle of fixing the reactive conformation by forming chelated complex. It $1 s$ also shown that tert-leucine tert-butyl ester (2, $R=t-B u)$ is an excellent chiral reagent working as a bidentate lıgand. In line with the research on this asymmetric synthetic technique, we next examined the possibilıty of obtaining a useful method for the synthesis of optically active ring compounds having vicinal two chiral centers. Evaluating such optically active compounds as useful synthons for a variety of biologlcally active natural products, pharmaceuticals, etc., we report here our preliminary approach to this problem by asymmetric conjugate addition of nucleophiles to chiral cyclıc α, β-unsaturated aldimınes (3), ${ }^{2}$ prepared from cycloalkenecarboxaldehydes (1) and optıcally actıve α-amıno acid tert-butyl esters (2).

The l,4-addition of Grignard reagents (4) to the eneimine (3), a chiral enal equivalent, proceeded smoothly to give, after acidic hydrolysis, 2-substituted cyclic aldehydes (5) in reasonable chemical and optical yields. Table summarizes the results of the reaction of 3 with phenyl- and vinylmagnesium bromide. In every case, higher chemical and optical yields were obtained for the eneimines derived from tert-leucine tert-butyl ester ($2, R=t-B u$) than those derived from valine tert-butyl ester (2, $R=i-P r$). It is also shown that aldehydes (5) having trans-configuration were obtained exclusively (except for runs 7 and 8), probably due to the epimerization of the initially formed cis-isomer during acid hydrolysis as described by corey in similar ring systems. ${ }^{3}$ In runs 7 and 8 , the product was a mixture of almost equal amounts of cis- and transisomer, but could be epimerized to a mixture predominating in trans-isomer by treatment with conc. HCl in THF according to the reported procedure. ${ }^{3}$ The optical purities and absolute configuration of the products were determined by chemical correlation with the known compounds.

It should be noted that the absolute configuration of the products obtained by the present method using $L-2$ as a chiral reagent was as shown in 5. It should also be mentioned that in cases where tert-leucine tert-butyl ester (2, $R=t-B u)$ was used as a chiral reagent, the optical yields of the products were very high and the chiral reagent was recovered in good yield without any loss of optical purity for reuse. The stereochemical course of the present 1,4addition reaction can be predicted by the previously proposed mechanism ${ }^{1}$ as shown in $\underset{\sim}{6}$, i.e., carbon nucleophile attacks from the less hindered side of the complex.

$\underset{\sim}{6}$

Typical procedure is as follows.
($1 \mathrm{R}, 2 \mathrm{~S}$)-(-)-trans-2-Vınylcyclopentanecarboxaldehyde (${ }_{\sim}^{5}, \mathrm{n}=5, \mathrm{R}^{\prime}=\mathrm{CH}=\mathrm{CH}_{2}$) (run 4) ———A solution of vinylmagnesium bromide in THF ($20 \mathrm{ml}, 41 \mathrm{mmole}$) was added dropwise to a cooled $\left(-23^{\circ} \mathrm{C}\right)$ solution of α, β-unsaturated aldimine ($3, n=5$, $R=t-B u)(2.65 \mathrm{~g}, 10 \mathrm{mmole})\left(\right.$ prepared from $\underset{\sim}{\mathcal{I}}(\mathrm{n}=5)$ and $\mathrm{L}-\underset{I}{2}(\mathrm{R}=\mathrm{t}-\mathrm{Bu})\left(\alpha_{\mathrm{D}}^{20}+1.522^{\circ}\right.$ ($1=0.03$, neat), corresponding to be 90.6% optically pure ${ }^{\text {le }}$)) in THF (50 ml) under argon. After 5 hr of stirring at $-23^{\circ} \mathrm{C}$, the reaction mixture was poured into an ice-cooled 10% aqueous citric acid (60 ml), stirred at room temperature for 1 hr , and the whole was extracted with ether (100 ml x 2). The combined

a The reaction was carried out at $0^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ optically pure $\mathrm{L}-2$ ($\mathrm{R}=\mathrm{i}-\mathrm{Pr}$) was used. $C_{L-2}(R=t-B u)$ of 90.6% optical purıty was used. d_{A} mixture of trans- and cisisomer after epimerlzation of the initial product by the reported procedure. ${ }^{3}$ $e_{\text {Based on }}[\alpha]_{D}^{20}-76.8^{\circ}$ (benzene) for optically pure $\underset{\sim}{5}\left(n=5, R^{\prime}=P h\right)$ by chemical correlation with (1R,2R)-trans-cyclopentane-l,2-dicarboxylic acid. $4 f_{\text {Based on }}$ $[\alpha]_{D}^{20}-57.9^{\circ}$ (acetone) for optically pure $5\left(n=5, R^{\prime}=\mathrm{CH}=\mathrm{CH}_{2}\right.$) by chemical correlatıon with (lR,2R)-trans-cyclopentane-l,2-dicarboxylic acid. ${ }^{4}$ gased on $[\alpha]{ }_{D} 0$ -37.8° (benzene) for optically pure $\underset{\sim}{5}\left(n=6, R^{\prime}=P h\right)$ by chemical correlation with (lS,2S)-trans-2-phenylcyclohexanecarboxylic acld. ${ }^{5} h_{A}$ value for trans-isomer. This value was obtalned by chemical conversion to (1R, 2R)-trans-cyclohexane-1,2-dimethanol, whose maximum rotation is reported to be $[\alpha]_{D}^{20}+21.4^{\circ}$ (benzene). 6 ${ }^{l}$ Corrected for the optical purlty of $L-2$ ($R=t-B u$) used. $j_{V a l u e s ~ i n ~ p a r e n t h e s e s ~}^{\text {in }}$ were obtaıned by PMR analysis of the derivatives using chiral shift reagent [Eu(hfc) ${ }_{3}$].
extracts were washed with satd. aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ and brine ($50 \mathrm{ml} \times 2$) successively, and dried over MgSO_{4}. Evaporation of the solvent at ordinary pressure followed by column chromatography (sılica gel, hexane/ether=15/l) gave the objective aldehyde ($5, \mathrm{n}=5, \mathrm{R}^{\prime}=\mathrm{CH}=\mathrm{CH}_{2}$) ($860 \mathrm{mg}, 69 \%$) as a faint yellow oil of $[\alpha]_{D}^{20}-48.0^{\circ}\left(\mathrm{c}=1.10\right.$, acetone). $\operatorname{IR}\left(\mathrm{film}, \mathrm{cm}^{-1}\right)$: 2720, 1725, 1640; PMR $\left(\mathrm{CDCl}_{3}, \delta\right): 4.8-5.2(2 \mathrm{H}, \mathrm{m}), 5.6-6.0(1 \mathrm{H}, \mathrm{m}), 9.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz})$. The above aqueous citric acid solution was basıfied with $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the whole was extracted with benzene ($50 \mathrm{ml} \times 2$). The combined extracts were washed with brine and dried over MgSO_{4}. Evaporation of the solvent gave $\mathrm{L}-2$ ($\mathrm{R}=\mathrm{t}-\mathrm{Bu}$) ($1.18 \mathrm{~g}, 63 \%$) of $\alpha_{D}^{20}+1.522(1=0.03$, neat $)$.

Acknowledgement Finantial support by a Grant-in-Ald for Special project Research (No. 311703) from the Ministry of Education, Science and Culture, Japan, is gratefully acknowledged.

References

1. a) S. Yamada and S. Hashimoto, Chemistry Letters, 1976, 921.
b) S. Hashımoto, S. Yamada, and K. Koga, J. Am. Chem. Soc., 98, 7450 (1976).
c) S. Hashimoto, N. Komeshima, S. Yamada, and K. Koga, Tetrahedron Letters, 1977, 2907.
d) S. Hashimoto and K. Koga, Tetrahedron Letters, 1978, 573.
e) S. Hashimoto, S. Yamada, and K. Koga, Chem. Pharm. Bull., 27, 771 (1979).
2. Satisfactory analytical and spectral data were obtalned for all compounds.
3. E. J. Corey and D. L. Boger, Tetrahedron Letters, 1978, 5, 9, 13, 4597.
4. a) L. J. Goldsworth and W. H. Perkin, J. Chem. Soc., 1914, 2639.
b) Y. Inoue, S. Sawada, M. Ohno, and H. M. Warborsky, Tetrahedron, 23, 3237 (1967).
5. L. Verbit and H. C. Price, J. Am. Chem. Soc., 94, 5143 (1972).
6. a) D. E. Applequist and N. D. Werner, J. Org. Chem., 28, 48 (1963).
b) H. M. Warborsky, L. Barash, and T. C. Davis, Tetrahedron, 19, 2333 (1963).
c) G. A. Haggis and L. N. Owen, J. Chem. Soc., 1953, 389.
(Received in Japan 1 May 1979)
